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Outline

* Interpretable embedding and overlooked issue

» Unlikelihood learning for interpretable embedding
» Submitted runs and analysis

* Summary
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Interpretable embedding (Dual-task model)

* Main idea: equip embedding search with interpretability.
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Wu and Ngo, Interpretable Embedding for Ad-hoc Video Search, ACMMM, 2020
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Overlooked Issue: Inconsistent Interpretation

« Contrary concepts are simultaneously decoded for visual
embeddings

* Hurt representation learning and retrieval performances
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How to generate consistent interpretation

* Two “supervisors” (Likelihood and Unlikelihood)

R B BN BN B BN B B BN B B . Ground truth:
A is being driven on a road.
A truck drives on a road at daytime.

Prior knowledge:
Q daytime | night

outdoors | indoors
Don’t do that!
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Likelihood learning

Ground truth:

* Goal: recover the concepts in Atruck s being driven on a road.
rUck 1s moving on a road.
the annOtated label. A truck drives or%a road at daytime.

» Obstacles: sparse and
incomplete label.

* Propose class-sensitive BCE loss.

Sparse and incomplete ground truth
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Unlikelihood Learning (UL)

outdoors | indoors
WordNet man | woman

Antonym sitting | standing

» Goal: suppress the probabilities of
contradicting/exclusive concepts.

* Prior knowledge: WordNet antonym|[1].
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» Obstacles: Context, globally/locally outdoors | indoors  man | woman
exclusive Ground truth
» Propose new UL loss function inspired ™dex ' 2 ¢ /7 7 ¢
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[1] Marneffe et al., Finding Contradictions in Text, ACL, 2008
[2] Welleck et al., Neural text generation with unlikelihood training, ICLR, 2009
[3] Roller et al., Don’t say that! making inconsistent dialogue unlikely with unlikelihood training, ACL, 2020
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New architecture

* Embedding search, concept search and fusion search

A man is jumping
high up and
spreading his legs.

A woman and a
man are hugging
each other
indpors.

Visual embedding decoding l A (Un)likclihood loss —bl Textual embedding decoding
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Advantages of the new model

* Make query embedding less sensitive to query formulation
* Likelihood training can address the missing labels problem
 Unlikelihood training avoids frequent and contradicting concepts

a person using sign language

a person communicating

a woman wearing sleeveless top

using sign language
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S U b m |tted ru N S On tV2 1 *(+ video features[2,3] + VATEX dataset [4])

Submitted run Concept search |Embedding Fusion search
search

Baseline #1 Original Dual-task model 0.167 0.167 0.193
Baseline #2 Feature enhance*ment 0.269 0.278 0.305
dual-task model
Baseline #3 Feature enhancement
dual encoding model* [1] / 3/ /
RUN1 Phrase model* 0.216 0.301 0.317
RUN2 (Un)likelihood model* 0.270 0.290 0.330
RUN3 RUN1+RUN2 / / 0.336
RUN4 RUN1+RUN2+Feature / / 0.355
enhancement
Novelty run Concept searches of RUN1 0.297 / /

and RUN2+manual queries

[1] Dong et al., Dual Encoding for Zero-Example Video Retrieval, CVPR, 2019

[2] Feichtenhofer et al., Slowfast networks for video recognition, ICCV, 2019 10
[3] Liu et al., Swin transformer: Hierarchical vision transformer using shifted windows, ICCV, 2021

[4] Wang et al., Vatex: A large-scale, high-quality multilingual dataset for video-and-language research, ICCV, 2019



Benefit from the phrase vocabulary

* 676 Find shots of a white dog
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Benefit from the unlikelinood training

* 662 Find shots of a woman wearing sleeveless top
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(a) Dual-task, qding (XINfAP=0.355) (b) UL model,eqqing (XInfAP=0.580)
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Suffer from small number of training cases

* 678 Find shots of a man sitting on a barber chair in a shop
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Automatic Versus Manual (Novelty) runs

« Automatic runs outperform manual runs.

* Manual (Novelty) runs are sensitive to query formulation.
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Summary

* Enhanced features and additional dataset significantly improve
the performance.

* (Un)likelihood model effectively pull down contradicted
videos.

» With phrases, interpretable embeddings are more robust, but
concept phrase retrieval rate could be limited by having a
small number of training samples.

* Manual runs are sensitive to query formulation and the results
are depend on the training data and the video dataset.
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